skip to primary navigationskip to content
 

Quantum Colloquium

Cavendish Quantum Colloquium

This series of colloquia in the Cavendish laboratory aims to cover all aspects of modern quantum many-body physics. It is broadly aligned with our research themes  of Emergent Quantum Phenomena (EQP) and Quantum Devices and Measurements (QDM) and as such will feature talks on both fundamental many-body physics as well as their exploitation in devices. It therefore covers all aspects of quantum phenomena in condensed matter and synthetic many-body systems, and their theoretical description.

As a consequence, the aim for these colloquia is to be accessible to a wider audience compared to a typical group seminar.

 

                                           All are welcome

 

30.11.18 Prof Sid Parameswaran -  *14:30* small lecture theatre

Associate Professor, Rudolf Peierls Centre for Theoretical Physics, University of Oxford

Topology, symmetry, and anomalies: investigating domain wall physics in quantum Hall nematic states

I will present recent work on ferromagnetic quantum Hall states that form on (111) surfaces of elemental Bismuth in high magnetic fields. This unusual states of matter combine the topological features of quantum Hall states with orientational symmetry breaking characteristic of nematic order. Recent scanning tunneling microscopy measurements have directly visualized the spontaneous formation of boundary modes between distinct nematic domains and investigated their electronic structure [1]. I will demonstrate that these boundary modes belong to a new class of `symmetry-protected’ Luttinger liquid that arise from the interplay of symmetry-breaking with quantum Hall physics, and that they provide a concrete realization of `anomaly inflow’ [2]. The analysis reveals strikingly different behavior of domain wall transport at quantum Hall filling factor $\nu=1,2$, in striking agreement with the STM results. I will explore implications of these ideas for the global phase diagram of quantum Hall valley nematics [3].

[1] M.T. Randeria, K. Agarwal, B. E. Feldman, H. Ding , Huiwen Ji3 , R. J. Cava , S. L. Sondhi , S. A. Parameswaran, A. Yazdani, under review.
[2]K. Agarwal, M.T. Randeria, A. Yazdani, S.L. Sondhi, S.A. Parameswaran, arXiv:1807.10293.
[3] S.A. Parameswaran and B.E. Feldman, arXiv:1809.09616.

 

16.11.18 Dr Andrew Jardine -  *14:30* small lecture theatre

Cavendish Laboratory, University of Cambridge

Helium Spin-Echo: A Flexible Tool for Studying Nanoscale Processes at Surfaces

Many fundamental and technologically relevant surface processes take place over Angstrom to nanometre length scales and picosecond to nanosecond timescales. However, the combination is extremely challenging to study experimentally; microscopy cannot achieve the necessary time-resolution, whereas spectroscopic experiments generally have poor spatial resolution. In this talk, I will introduce the Helium Spin-Echo technique, a method pioneered at the Cavendish, which has enabled the regime to be accessed experimentally for the first time. The technique involves scattering helium atoms while simultaneously using nuclear spin-polarisation of the atoms to split and recombine the helium wavepackets, giving a reciprocal-space surface-correlation measurement, with sensitivity over the picosecond range. Helium Spin-Echo measurements can be applied to a wide range of surface processes and in many cases have revolutionised our understanding of underlying physical phenomena. I will discuss a series of examples from recent experiments including the rates and mechanisms of nanoscale diffusion, the behaviour arising from complex extended molecules compared to point particles, determination of interaction potentials and rate limiting energy barriers, the transition to quantum transport, and energy exchange rates / vibrational lifetimes giving subsequent insights into friction on the nanoscale.

 

02.11.18 Dr Akshay Rao -  *14:30* small lecture theatre

EPSRC Early Career Fellow, Winton Advanced Research Fellow, Cavendish Laboratory

Probing Non-Equilibrium Dynamics in Energy Materials with Extreme Spatio-Temporal Resolution

The interaction of light with matter is fundamental to the operation of a range of devices such as solar cells, LEDs, photocatalytic, plasmonic and many QI systems. For over 30 years, ultrafast spectroscopy has served as the key tool to understand the dynamics of the quasiparticles mediating light-matter interaction such as excitons, polarons and polaritons. However, to date, ultrafast spectroscopies were designed and largely applied to species dissolved in liquids or homogeneous bulk solids. The advent of nanoscience and thin films materials with nanoscale inhomogeneity and disorder has rendered these ensemble-based methods inadequate and they continue to be used largely because of a lack of alternatives, rather than being particularly suited to address the questions of interest. In this talk I will present first results from a new experimental platform combining unprecedented spatial, temporal, spectral and vibronic sensitivity. This allows us to follow the dynamics and motion of charges, excitons, polaritons and other quasiparticles down to 10nm length scales with 10fs time resolution, while providing few nm spectral resolution as well as information about the coupling between electronic and nuclear degrees of freedom in the system. I will highlight unexpected results including ultrafast long-range motion of photoexcitations in 2D semiconductors, organic molecules and hybrid organic-inorganic systems and how these may be harnessed in novel devices.

 

19.10.18 Prof. Manish Chhowalla -  *14:30* small lecture theatre

Goldsmiths' Professor of Materials Science, University of Cambridge

Electrical contacts between three-dimensional metals and two-dimensional semiconductors

As the dimensions of semiconducting channels in field effect transistors (FETs) decrease, the contact resistance of metal-semiconductor interface at the source and drain electrodes dominates the performance. Two dimensional (2D) transitional metal dichalcogenides (TMDs) such as molybdenum disulfide (MoS2) have been demonstrated to be excellent semi-conductors for ultra-thin FETs. However, unusually high contact resistance has been observed across the metal-2D TMD interface. We have shown that it is possible to reduce the contact resistance by forming lateral junctions between metallic and semiconducting phases of 2D materials. Recent studies have shown that van der Waals (vdW) contacts formed by graphene on 2D TMDs provide lowest contact resistance. However, vdW contacts between evaporated three-dimensional metal and 2D TMDs have yet to be demonstrated. Here, we report the realization of ultra-clean vdW contacts between 3D metals and single layer MoS2. Using scanning transmission electron microscopy (STEM) imaging, we show that the 3D metal and 2D MoS2 interface is atomically sharp with no detectable chemical interaction, suggesting van-der-Waals-type bonding between the metal and MoS2. We show that the contact resistance of indium electrodes is ~ 800 Ω-μm – amongst the lowest observed for metal electrodes on MoS2 and is translated into high performance FETs with mobility in excess of 160 cm2-V-s-1 at room temperature without encapsulation. We also demonstrate low contact resistance of 220 Ω-μm on 2D NbS2 and near ideal band offsets, indicative of defect free interfaces, in WS2 and WSe2. I will introduce 2D TMDs and their properties and then describe our efforts on making good contacts on 2D semiconductors.

 

4.10.18 Prof. Ali Yazdani  -  15:30 small lecture theatre

Princeton University, Princeton, US

Spotting the elusive Majorana under the microscope

Ettore Majorana famously considered that there may be fermions in nature that are their own antiparticle — and then he mysteriously disappeared just after proposing the idea in 1938. In recent years, following pioneering theoretical work of Kitaev and others, we have learned how to engineer materials that harbor quasiparticles that behave similar to fermions Majorana had envisioned. In particular, there has been a focus on one-dimensional topological superconductor that harbor Majorana zero modes (MZM) that can potentially be used to make fault-tolerant topological quantum computation possible.

Recently, we have proposed and implemented a platform for realization of topological superconductivity and MZM in chains of magnetic atoms on the surface of a superconductor [1,2]. In this talk, I will describe this platform and the series of experiments we have performed to establish the presence of these exotic quasi-particle using spectroscopic mapping with the scanning tunneling microscope (STM). [2-4] These include study of the unique spin signature of MZM.[4] Finally, if there is time I will discuss our most recent work on realization of MZM in a platform based on chiral quantum spin Hall edge states. Overall these experiments, illustrate how the power of spectroscopic imaging with the STM can be used to visualize novel quantum states of matter and their exotic quasi-particles.

[1] S. Nadj-Perge et al. PRB 88, 020407 (2013).
[2] S. Nadj-Perge et al. Science 346, 6209 (2014).
[3] B. E. Feldman et al. Nature Physics 13, 286 (2016).
[4] S. Jeon et al. Science 358, 772 (2017).

 

 

Past talks -- Joint Seminar on Emergent Quantum Phenomena

Lent term 2017

2.2.18 Dr. Christian Gross

Max Planck Institute for Quantum Optics, Garching, Germany

Quantum Gas Microscopes - From Textbook Experiments to New Frontiers

 

16.2.18 Prof. Achim Rosch

Institute for Theoretical Physics, University of Cologne, Germany

Giant response of weakly driven systems

 

9.3.18 Prof. Chris Ford & Prof. Charles Smith 

SP Group, Cavendish laboratory, Cambridge

Measuring interacting electrons in low dimensional systems: spin-charge separation and 'replicas & tbd

 

16.3.18 Prof. Christos Panagopoulos

Nanyang Technological University, Singapore

Tunable Functional Magnetic Skyrmions at Room Temperature

 

Michaelmas term 2017

Fridays, 2pm,  new location: small lecture theater, Bragg building

  • Friday October 13th:

Cold atoms vs solids: Differences and opportunities

Dr. Ulrich Schneider AMOP group, Cavendish Laboratory, Cambridge.

 

  • Friday October 27th:

Concepts and techniques in Magnetism

Dr. Adrian Ionescu TFM group, Cavendish Laboratory, Cambridge.

 

  • Friday November 10th:

Introduction to topological phases

Dr. Benjamin Beri Cavendish & DAMTP, Cambridge.

 

  • Friday October 13th:

Concepts and techniques in Quantum Matter research at the Cavendish

Dr. F. Malte Grosch QM group, Cavendish Laboratory, Cambridge.